• 2016 год
  • Инфляция Безработица Рост ВВП
  • МРОТ: 6204 рублей
    Ключевая ставка: 10.00%
  • НДС: 18% √ Налог на прибыль: 20%
    Страховые взносы в ПФ: 30%
    Налог на имущество: 2% (регион)
  • 2014 год
  • Инфляция: 11.4% √ Безработица: 5.1% √ Рост ВВП: 0.6%
  • МРОТ: 5554 рублей
    Ключевая ставка: 17%
    • Россия в цифрах

      Россия в цифрах

      Статистические данные
    • Мировая экономика в цифрах

      Мировая экономика в цифрах

      Показатели и индикаторы развития мировой экономики.
    • Новости образования

      Новости образования

      Федеральная служба по надзору в сфере образования и науки (Рособрнадзор): список закрытых вузов, новости ЕГЭ

Маргинальная склонность к потреблению

ГлавнаяЭкономика и управлениеЭконометрика
ДисциплинаЭконометрика
ВУЗМГУТУ
Описание
1. Предположим, что вы оцениваете линейную функцию потребления ct = a + byt+et n n индивидуумов. Как учесть возможный сдвиг этой функции при переходе от городского к сельскому потребителю, если вы считаете, что маргинальная склонность к потреблению постоянна, в то время как средняя склонность к потреблению может меняться? Как проверить гипотезу о том, что маргинальные склонности к потреблению индивидуумов с доходом выше и ниже уровня y* отличаются?

2. Рассмотрим регрессию
y_t = b1 + b2d_t + et,	 t=1,…,n,
где d – некоторая фиктивная переменная. Пусть y0 – среднее значение переменной y по n0 наблюдениям, для которых d=0 и y1 – среднее значение по n1 наблюдениям, для которых d=1 (n0+n1=n). Найдите V(b1), V(b2).

3. Рассмотрим регрессионную модель 
y_t=b1x_t1+b2x_t2+e_t,	 t=1,…,n,
в которой переменные представлены в виде отклонений от выборочных средних (т.е. y=0, x1=0, x2=0).
а) Покажите, что дисперсии и ковариации оценок наименьших квадратов b1 и b2 равны:
где
r12
– выборочный коэффициент корреляции между x1 и x2.
б) Чему равны дисперсии и ковариации в случае r12=0? Как это связано с проблемой мультиколлинеарности?
в) Постройте график отношения V(b1) к значению V(b2), полученному в б), в диапазоне 01 и 0.

5. Дана стандартная модель множественной регрессии y=Xb+e.
а) Выразите матрицу ковариаций МНК-оценки вектора b в терминах собственных значений и собственных векторов матрицы XTX.
б) Объясните, как соотносится результат а) с проблемой мультиколлинеарности.

6. b* -  оценка, полученная для обобщенной регрессионной модели. Найдите V(b)– ковариационную матрицу.

7. Докажите, что если в обобщенной регрессионной модели y=yXb+ e вектор e ошибок имеет многомерное нормальное распределение, то b_ОМНК = b_МП.

8. Рассмотрим уравнение регрессии:
y_t = b+e_t,	 t=1,…,n.
Пусть ошибки регрессии удовлетворяют следующим условиям:
E(et) = 0; cov(et,es) = 0; V(e) = s^2xt, xt>0.
а) Найдите оценку метода наименьших квадратов b и ее дисперсию.
б) Предложите несмещенную оценку, обладающую меньшей дисперсией, чем оценка метода наименьших квадратов. Получите дисперсию этой оценки и сравните ее с дисперсией оценки метода наименьших квадратов. Интерпретируйте результат.

9. Проверьте, что для парной регрессии с гетероскедастичностью дисперсия оценки параметра b, полученная с помощью метода взвешенных наименьших квадратов, меньше дисперсии МНК-оценки.

10. Процесс, порождающий данные, описывается уравнением
y_t = bx_t+e_t,
E(et) = 0; E(e^2) = const; E(es,et) = 0, t=1,…,n.
Экспериментатор не имеет доступа к исходным данным, а может использовать лишь «групповые» данные. А именно, значения независимой переменной упорядочиваются по величине (x1 < x2 < … 
τ twitter ВКонтакте Ψ facebook
+7 912 459 33 67 594-797-934